3.4.19 \(\int \frac {1}{(d+e x) \sqrt {b x+c x^2}} \, dx\) [319]

Optimal. Leaf size=68 \[ \frac {\tanh ^{-1}\left (\frac {b d+(2 c d-b e) x}{2 \sqrt {d} \sqrt {c d-b e} \sqrt {b x+c x^2}}\right )}{\sqrt {d} \sqrt {c d-b e}} \]

[Out]

arctanh(1/2*(b*d+(-b*e+2*c*d)*x)/d^(1/2)/(-b*e+c*d)^(1/2)/(c*x^2+b*x)^(1/2))/d^(1/2)/(-b*e+c*d)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 68, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {738, 212} \begin {gather*} \frac {\tanh ^{-1}\left (\frac {x (2 c d-b e)+b d}{2 \sqrt {d} \sqrt {b x+c x^2} \sqrt {c d-b e}}\right )}{\sqrt {d} \sqrt {c d-b e}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((d + e*x)*Sqrt[b*x + c*x^2]),x]

[Out]

ArcTanh[(b*d + (2*c*d - b*e)*x)/(2*Sqrt[d]*Sqrt[c*d - b*e]*Sqrt[b*x + c*x^2])]/(Sqrt[d]*Sqrt[c*d - b*e])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rubi steps

\begin {align*} \int \frac {1}{(d+e x) \sqrt {b x+c x^2}} \, dx &=-\left (2 \text {Subst}\left (\int \frac {1}{4 c d^2-4 b d e-x^2} \, dx,x,\frac {-b d-(2 c d-b e) x}{\sqrt {b x+c x^2}}\right )\right )\\ &=\frac {\tanh ^{-1}\left (\frac {b d+(2 c d-b e) x}{2 \sqrt {d} \sqrt {c d-b e} \sqrt {b x+c x^2}}\right )}{\sqrt {d} \sqrt {c d-b e}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.13, size = 92, normalized size = 1.35 \begin {gather*} -\frac {2 \sqrt {x} \sqrt {b+c x} \tan ^{-1}\left (\frac {-e \sqrt {x} \sqrt {b+c x}+\sqrt {c} (d+e x)}{\sqrt {d} \sqrt {-c d+b e}}\right )}{\sqrt {d} \sqrt {-c d+b e} \sqrt {x (b+c x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((d + e*x)*Sqrt[b*x + c*x^2]),x]

[Out]

(-2*Sqrt[x]*Sqrt[b + c*x]*ArcTan[(-(e*Sqrt[x]*Sqrt[b + c*x]) + Sqrt[c]*(d + e*x))/(Sqrt[d]*Sqrt[-(c*d) + b*e])
])/(Sqrt[d]*Sqrt[-(c*d) + b*e]*Sqrt[x*(b + c*x)])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(131\) vs. \(2(56)=112\).
time = 0.44, size = 132, normalized size = 1.94

method result size
default \(-\frac {\ln \left (\frac {-\frac {2 d \left (b e -c d \right )}{e^{2}}+\frac {\left (b e -2 c d \right ) \left (x +\frac {d}{e}\right )}{e}+2 \sqrt {-\frac {d \left (b e -c d \right )}{e^{2}}}\, \sqrt {c \left (x +\frac {d}{e}\right )^{2}+\frac {\left (b e -2 c d \right ) \left (x +\frac {d}{e}\right )}{e}-\frac {d \left (b e -c d \right )}{e^{2}}}}{x +\frac {d}{e}}\right )}{e \sqrt {-\frac {d \left (b e -c d \right )}{e^{2}}}}\) \(132\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)/(c*x^2+b*x)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/e/(-d*(b*e-c*d)/e^2)^(1/2)*ln((-2*d*(b*e-c*d)/e^2+1/e*(b*e-2*c*d)*(x+d/e)+2*(-d*(b*e-c*d)/e^2)^(1/2)*(c*(x+
d/e)^2+1/e*(b*e-2*c*d)*(x+d/e)-d*(b*e-c*d)/e^2)^(1/2))/(x+d/e))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(c*x^2+b*x)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(c*d-%e*b>0)', see `assume?` fo
r more detai

________________________________________________________________________________________

Fricas [A]
time = 1.64, size = 139, normalized size = 2.04 \begin {gather*} \left [\frac {\log \left (\frac {2 \, c d x - b x e + b d + 2 \, \sqrt {c d^{2} - b d e} \sqrt {c x^{2} + b x}}{x e + d}\right )}{\sqrt {c d^{2} - b d e}}, \frac {2 \, \sqrt {-c d^{2} + b d e} \arctan \left (-\frac {\sqrt {-c d^{2} + b d e} \sqrt {c x^{2} + b x}}{c d x - b x e}\right )}{c d^{2} - b d e}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(c*x^2+b*x)^(1/2),x, algorithm="fricas")

[Out]

[log((2*c*d*x - b*x*e + b*d + 2*sqrt(c*d^2 - b*d*e)*sqrt(c*x^2 + b*x))/(x*e + d))/sqrt(c*d^2 - b*d*e), 2*sqrt(
-c*d^2 + b*d*e)*arctan(-sqrt(-c*d^2 + b*d*e)*sqrt(c*x^2 + b*x)/(c*d*x - b*x*e))/(c*d^2 - b*d*e)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {x \left (b + c x\right )} \left (d + e x\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(c*x**2+b*x)**(1/2),x)

[Out]

Integral(1/(sqrt(x*(b + c*x))*(d + e*x)), x)

________________________________________________________________________________________

Giac [A]
time = 1.84, size = 61, normalized size = 0.90 \begin {gather*} \frac {2 \, \arctan \left (-\frac {{\left (\sqrt {c} x - \sqrt {c x^{2} + b x}\right )} e + \sqrt {c} d}{\sqrt {-c d^{2} + b d e}}\right )}{\sqrt {-c d^{2} + b d e}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(c*x^2+b*x)^(1/2),x, algorithm="giac")

[Out]

2*arctan(-((sqrt(c)*x - sqrt(c*x^2 + b*x))*e + sqrt(c)*d)/sqrt(-c*d^2 + b*d*e))/sqrt(-c*d^2 + b*d*e)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{\sqrt {c\,x^2+b\,x}\,\left (d+e\,x\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((b*x + c*x^2)^(1/2)*(d + e*x)),x)

[Out]

int(1/((b*x + c*x^2)^(1/2)*(d + e*x)), x)

________________________________________________________________________________________